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Abstract. Orientational phase transitions are investigated within the Heisenberg model with
single-site anisotropy. The temperature dependence of the cone angle is calculated analytically
within the spin-wave theory. The role of the quantum renormalizations of anisotropy constants is
discussed. A comparison with the experimental data on the cone–plane orientational transition in
holmium is performed.

1. Introduction

The old problem of magnetic structure of rare-earth metals and their compounds is still a
subject of experimental and theoretical investigation. These substances have complicated
phase diagrams and demonstrate a number of orientational phase transitions. In particular,
such transitions take place in the orthoferrites and the practically important intermetallic
compounds RCo5 (R = Pr, Nd, Tb, Dy, Ho); see, e.g., reference [1]. A qualitative explanation
of these transitions was obtained many years ago within the Heisenberg model with inclusion of
magnetic anisotropy [2]. In a number of systems, lattice (magnetoelastic) effects are important.
The standard description is usually performed within mean-field approaches (see [2, 3] and
references therein). However, quantitative comparison with experimental data requires a more
detailed treatment.

Provided that the orientational transition temperature is low (in comparison with the
magnetic ordering point), spin-wave theory is applicable [2]. In the simplest case of the
second-order anisotropy the magnetization lies either along the easy axis or in the easy plane.
Inclusion of higher-order anisotropy constants can lead to cone phases where the magnetization
makes the angleθ with thez-axis. The caseθ = π/2 was considered in references [3–6] where
the temperature renormalization of the anisotropy constants and the spin-wave spectrum in Tb
and Dy within the standard spin-wave theory were calculated.

In the present paper we consider the cone phase with arbitrary 06 θ 6 π/2. The
situation here is analogous to that for the field-induced orientational phase transitions, e.g., in
the transverse-field Ising model (see reference [7] and references therein). Unlike for the latter
model, one can expect at low enough temperatures and small values of anisotropy the spin-
wave theory to be applicable for an arbitrary relation between anisotropy parameters, not only
close to the orientational phase transition. Even for the second-order easy-plane anisotropy, the
Holstein–Primakoff representation for spin operators used in references [4–6] leads to so-called
kinematical inconsistencies because of incorrect treatment of on-site kinematical relations. To
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avoid this difficulty, we use the technique of spin coherent states. Our approach is to some
extent similar to the operator approach used in reference [3], but gives the possibility of treating
more simply higher-order anisotropy constants, as well as of calculating higher-order terms of
the 1/S expansion.

The anisotropic Heisenberg model used is formulated in section 2. In section 3 we develop
a special form of the 1/S expansion which gives the possibility of taking into account exactly
on-site kinematical relations. In section 4 we treat the cone–plane transition owing to the
temperature dependence of the cone angleθ and discuss experimental data on the rare-earth
metals.

2. The model and mean-field approximation

We start from the Hamiltonian of the Heisenberg model with inclusion of single-site anisotropy

H = −J
2

∑
〈ij〉
SiSj +B0

2

∑
i

(O0
2)i +B0

4

∑
i

(O0
4)i (1)

whereJ > 0 is the exchange parameter,

O0
2 = 3(Sz)2 − S(S + 1)

O0
4 = 35(Sz)4 − 30S(S + 1)(Sz)2 + 25(Sz)2 + 3S2(S + 1)2 − 6S(S + 1)

(2)

are the irreducible tensor operators of second and fourth orders,Bml are the corresponding
anisotropy constants.

Up to an unimportant constant we can rewrite the Hamiltonian (1) in the form

H = −J
2

∑
〈ij〉
Si · Sj +D

∑
i

(Szi )
2 +D′

∑
i

(Szi )
4 (3)

where

D = 3B0
2 − [30S(S + 1)− 25]B0

4

D′ = 35B0
4 .

(4)

ForD,D′ > 0, spins of magnetic ions lie in the easy planexy, while forD,D′ < 0, we have
the easy axisz. ForD > 0,D′ < 0, a first-order transition takes place between the easy plane
(which is favoured by second-order anisotropy) and easy axis (which is favoured by large|D′|).
We consider only the caseD < 0,D′ > 0 where the cone phase occurs at intermediate values
ofD/(2D′S2), so that the spin orientation direction makes the angleθ with thez-axis and the
orientational phase transitions are of second order. This is the case for Gd and also for Ho, Er
in low-temperature phases.

In the phenomenological approach it is supposed (see, e.g., references [1,2]) that

F = Fis +D(T )(S cosθ)2 +D′(T )(S cosθ)4 (5)

whereFis is the isotropic (θ -independent) part of the free energy. Then we obtain by minimiz-
ation ofF

cos2 θ(T ) = − D(T )

2D′(T )S2
(6)

so at the point whereD(T ) = 0 the spins become directed in thexy-plane while when
|D(T )| > 2D′(T )S2 they are aligned along thez-axis. The temperature dependence ofD(T )

is supposed to have the form

D(T ) = 2D′S2(T1− T )/(T2 − T1) (7)
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withD′(T ) > 0. Thus atT = T1 the transition from the easy-plane to the cone structure takes
place, while atT = T2 the transition from the cone to the easy-axis structure occurs. At the
same time, Zener’s [8] result for the temperature dependence of the anisotropy constants in an
axially symmetric state withθ = 0 has the form

B0
l (T ) = B0

l M
l(l+1)/2 (8)

whereM = 〈S̃z〉/S is the relative magnetization, andD(T ), D′(T ) are determined by the
same relations (4) withB0

l → B0
l (T ). As pointed out in references [3–6], the temperature

dependences of the anisotropy constants have a more complicated form for the cone structures
with θ > 0 (in fact, only the caseθ = π/2 is discussed in references [3–6]).

A systematic way of calculating temperature dependences of anisotropy constants is using
the 1/S expansion which is considered in the next section.

3. The 1/S expansion of the partition function

The 1/S expansion developed here is slightly different from the standard scheme of 1/S

expansion [4–6] since it gives the possibility of taking into account exactly the kinematical
relations between powers of spin operators on each site. We use the coherent state approach
(see, e.g., reference [9]) to write down the partition function in the form

Z =
∫

Dπ exp

{
iS
∫ β

0
dτ (1− cosϑ)

∂ϕ

∂τ
− 〈π |H|π〉

}
(9)

whereπ is the unit-length vector,ϑ andϕ are its polar and azimuthal angles respectively,
|π〉 = exp(iϑSy + iϕSz)|S〉 are the coherent states (Sz|S〉 = S|S〉). To construct the 1/S
expansion we rotate the coordinate system around they-axis through the angleθ . The
Hamiltonian (1) takes the form

H = −J
2

∑
〈ij〉
Si · Sj +

∑
i

∑
l,m

l∑
m′=−l

Bml

√
(l +m)!(l − |m′|)!
(l −m)!(l + |m′|)!

Aml

A
|m′|
l

dlmm′(θ)(Õ
|m′|
l )i (10)

wheredlmm′(θ) are the Wigner matrices of the rotation group irreducible representation,

Aml =
(l −m)!

(l + [m] − 1)!!

1

Km
l

(11)

([m] = m form even and [m] = m+1 form odd), forl 6 4 we haveKm
l = 1, and the tilde sign

here and hereafter refers to the rotated coordinate system. Since the partition function (9) is
invariant under rotation of the states|π〉, it is convenient to use the coherent states defined in the
same coordinate system, i.e.,|π̃〉 = exp(iϑS̃y + iϕS̃z)|S̃〉 with S̃z|S̃〉 = S|S̃〉. The advantage
of using the coherent states is the simple form of the averages of the tensor operators (2) over
|π̃〉. By direct calculation we obtain

〈π̃ |Õm
l |π̃〉 = SlAml Pml (cosϑ) cosmϕ (12)

where Pml (x) are the associated Legendre polynomials, and the factorsSl = S(S −
1/2) · · · [S − (l − 1)/2] take into account properly the kinematical relations on each site. In
particular, the second-order anisotropy term vanishes forS = 1/2, and the fourth-order term for
S = 1/2, 1, 3/2, as it should (unlike the results for boson representations in references [4–6]).
Using (12) we obtain for the caseBml = B0

l δm0 under consideration the result

〈π̃ |H|π̃〉 = −JS
2

2

∑
〈ij〉
π̃i · π̃j

+
∑
i

∑
l=2,4

l∑
m=−l

SlB
0
l A

0
l

(l − |m|)!
(l + |m|)! P

|m|
l (cosθ)P |m|l (cosϑi) cosmϕi. (13)



6826 V Yu Irkhin and A A Katanin

Further calculations are performed along the same lines as in reference [7]. Using the
representation

cosϑi =
√

1− sin2 ϑi

and expanding in sinϑi we obtain the 1/S expansion of the partition function. It should be
stressed that we retain the factorsSl , as well as theS-dependences in (4), non-expanded. By
performing decouplings, terms of third order are reduced to linear ones, and terms of fourth
order to quadratic ones. The requirement of the absence of sinϑ-linear terms leads to the result
for the cone angleθ

cos2 θ = 3

7

[
1−X + Y − 1

10

B0
2S2

B0
4S4

(
1− 7

2S
+ 6X + Y

)]
(14)

where

X = 〈π2
xi〉 ≡ 〈sin2 ϑ cos2 ϕ〉 =

∑
q

J0 − Jq
2Eq

coth
Eq

2T

Y = 〈π2
yi〉 ≡ 〈sin2 ϑ sin2 ϕ〉 =

∑
q

J0 − Jq +10/S

2Eq
coth

Eq

2T

(15)

and the ‘bare’ magnon spectrum reads

Eq = S
√
(J0 − Jq)(J0 − Jq +10/S)

10 = 2
[
3B0

2S2 cos 2θ − 10B0
4S4(28 cos4 θ − 27 cos2 θ + 3)

] (16)

where10 is the energy gap. To obtain the correct description of the thermodynamics at not
too low temperatures the corrections in (14) can be collected into powers in the same way as
in references [10,11],

1− αX→ 1/Xα 1− αY → 1/Y α. (17)

(In the presence of higher-order anisotropy this is essential since the coefficients atX, Y

increase∼l2/2 with the anisotropy order). Then we have

cos2 θ = 3

7

ZX

ZY

[
1− 1

10

B0
2(T )S2

B0
4(T )S4

]
(18)

where

B0
2(T ) = Z2

XZYB
0
2 B0

4(T ) = Z9
XZYB

0
4 (19)

are the temperature-renormalized anisotropy constants, and

ZX = 1 +
1

2S
−X ZY = 1 +

1

2S
− Y. (20)

The relations (19) extend the results of references [3–6] to the case where spins make a non-zero
angle with thez-axis. The renormalized gap has the form

1 = 6 cos 2θB0
2S2 − 20B0

4S4[3(1− 7X̃)− 3 cos2 θ(9− 56X̃ − 7Ỹ )

+ 28 cos4 θ(1− 6X̃ − Ỹ )] − 196 sin2 θ cos2 θ

×
∑
k,ωn

[
3B0

2S2(J0 − Jk)− 10B0
4(S4/S)10 cos2 θ

ω2
n + S2(J0 − Jk)(J0 − Jk +10/S)

]2

(21)

where

X̃ = X − 1/(2S) Ỹ = Y − 1/(2S) ωn = 2πnT .
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After introducing the temperature-renormalized second- and fourth-order anisotropy
parametersD(T ) andD′(T ),

D(T )S2 = 3B0
2(T )S2 − 30B0

4(T )S4

D′(T )S4 = 35B0
4(T )S4(ZY /ZX)

(22)

the expression for cosθ coincides with that of the phenomenological theory (6). Collecting
again corrections in (21) into powers, we obtain for the renormalized gap in the notation (22)
the expression

1 = 2D(T )S2 cos 2θ + 2D′(T )S4 cos4 θ + 6D′(T )S4 sin2 θ cos2 θ

− 196 sin2 θ cos2 θ
∑
k,ωn

[
3B0

2S2(J0 − Jk)− 10B0
4(S4/S)10 cos2 θ

ω2
n + S2(J0 − Jk)(J0 − Jk +10/S)

]2

(23)

which also coincides with that obtained in the phenomenological theory except for the last
term. Note that atθ > 0 the renormalizations (22) are present even atT = 0, which should
be taken into account when treating experimental data.

4. Orientational phase transitions

Now we can pass to description of possible orientational phase transitions. Consider first the
case of a small enough constantB0

4 (or, equivalently,D′), so that cos2 θ(0) is close to unity.
Then cos2 θ(T ) increases with temperature and there occurs a transition to the easy-axis phase
at the point determined by

3

7

ZX

ZY

[
1− 1

10

B0
2(T )S2

B0
4(T )S4

]
= 1. (24)

In the opposite case of a large enoughB0
4, cos2 θ(0) is small, and cos2 θ(T ) decreases with

temperature, so at the point where

B0
2(T )S2 = 10B0

4(T )S4 (25)

a phase transition to the easy-plane phase occurs. Thus one can expect that there exists a
critical valueθc: for θ0 = θ(0) < θc we have a decrease ofθ(T ) with T and the phase trans-
ition from cone to easy-axis phase, while forπ/2 > θ0 > θc we have an increase ofθ(T )
with T and the phase transition from cone to easy-plane phase. The numerical computations
for the simple cubic lattice (see figure 1) yieldθc ' 50◦. Figure 2 shows the corresponding
temperature dependences of the anisotropy constantsD(T ),D′(T ). For simplicity,Jq is taken
for the simple cubic lattice.

The phase transitions described by equations (24) and (25) are analogous to those in the
phenomenological theory of reference [1] that occur atD(T ) = 0 andD(T ) = −2D′(T )S2,
respectively. However, unlike the phenomenological approach, microscopical consideration
leads to either cone–easy-axis or cone–easy-plane transition with increasing temperature,
depending on the zero-temperature value ofθ . At the same time, the transition from the easy-
plane to the easy-axis structure (through the intermediate cone phase) cannot be explained by
purely magnetic renormalizations of anisotropy constants.

The result (14) gives the mean-field values of the critical exponents for both the ground-
state and temperature orientational phase transitions (e.g., for the order parameter〈Sz〉 ∝ cosθ
we haveβ = 1/2). Unlike the systems discussed in reference [7], the system under
consideration has the dynamical critical exponentz = 2 (i.e., a single excitation mode with
nearly quadratic dispersion is present). Thus the upper critical dimensionality for the ground-
state quantum phase transition (QPT) isd+

c = 4 − z = 2. In this respect, the system is
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Figure 1. The theoretical temperature dependences of the cone angleθ(T ) for S = 7/2 and
different values of second-order anisotropy:D/J = 0.004; 0.005; 0.006 from upper to lower
curve. The value ofD′/J is 3.7× 10−4.

0.00 1 0.0 0 2 0.0 0 30 .00 40.00
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Figure 2. The temperature dependences of the anisotropy constantsD(T ), D′(T ) corresponding
to figure 1. Temperature transition points correspond to the intersection of the curveD(T ) with
one of the dashed lines.

analogous to theXY model in the transverse magnetic field [12]. A characteristic feature
of such systems is the mean-field behaviour of critical exponents both above and below the
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critical dimensionality. For (hypothetical) systems withd = 2, logarithmic corrections to
ground-state properties near QPT are present (see, e.g., reference [13]). At the same time, the
upper critical dimensionality for the temperature phase transition isd+

cT = 4, and atd < d+
cT

the temperature transition critical exponents differ from their mean-field values.
Now we discuss the experimental situation. In Gd (see, e.g., references [2, 14]) the

orientational phase transition from cone phase to easy-axis phase is observed atTc = 240 K.
The temperature dependence of the cone angle atT < Tc (and also of the magnetic anisotropy
constants) is non-monotonic, unlike the dependence discussed in section 2. This complicated
situation is connected with the absence of orbital momentum and the smallness of the anisotropy
in gadolinium.

In holmium the low-temperature phase is a conical spiral one, the angle of the cone
changing from≈80◦ to 90◦ in the temperature interval 0–20 K. The spiral angle makes up
about 30◦. At the same time, the temperature of the magnetic phase transition with vanishing
magnetization isTN = 132 K, so we haveT � TN in the temperature interval discussed.
Since the sixth-order and dipolar anisotropy are important, we use the Hamiltonian [15]

HHo = H− 1

2

∑
ij

J Dij S
z
i S

z
j +B0

6

∑
i

(O0
6)i +B6

6

∑
i

(O6
6)i (26)

with

JD(q) = −Jdd{0.919 + 0.0816 cos(qz/2)− 0.0006 cosqz} (27)

for q along thez-axis,Jdd = 4π(gµB)2N/V ' 0.035 meV. The hcp lattice is not of a Bravais
type. However, if we neglect the optical mode (which is possible atT � TN ) one can put
(see, e.g., reference [2])

Jq = 2J
[
cosqx + 2 cos(qx/2) cos(

√
3qy/2)

]
+ 2J ′ cos

qz

2

∣∣∣∣exp(iqy/
√

3) + 2 cos
qx

2
exp(−iqy/2

√
3)

∣∣∣∣. (28)

The contribution of the dipolar anisotropy can be roughly taken into account by the renorm-
alization of second-order anisotropy parameter

(B0
2)R = B0

2 + 0.0816Jdd . (29)

Other parameters of the Hamiltonian were also taken from reference [15]:J = 0.65 K,
J ′ = 0.6J, B0

2 = 0.3 K, B0
4 = 0, B0

6 = −1.1× 10−5 K, B6
6 = 1.07× 10−4 K. For simplicity,

we restrict ourselves to a collinear magnetic structure (this is justified by the spiral angle in
the rare earths being small, especially at low temperatures). Then the calculations with the
Hamiltonian (26) are completely analogous to those in the previous section. The calculated
dependence of the cone angle is compared with the result of the mean-field approximation
and experimental data in figure 3. One can see that our results improve somewhat on those
of the mean-field theory where the temperature dependence of the anisotropy constants is
given by (8). Note that due to the inequalityT � TN the decrease of the magnetization
in the temperature interval 0–20 K under consideration makes up only about 1%. Thus one
can expect our spin-wave results to be sufficiently accurate (unlike those from the mean-field
approach, where errors are uncontrollable).

To conclude, we have formulated a consistent spin-wave approach to the description of
thermodynamic properties of anisotropic magnets at low temperatures. The renormalizations
of the anisotropy constants and the spin-wave spectrum for an arbitrary cone angle are calc-
ulated. This gives the possibility of describing the orientational phase transition between the
cone and plane phases.
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Figure 3. Calculated dependences of the cone angle in the mean-field approximation (short-dashed
line) and renormalized spin-wave theory (RSWT, long-dashed line) as compared with experimental
points for holmium (references [2,16]).
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